Population Pharmacokinetics of Imipenem on Burn Patients

Phuong T. T. Nong¹
Hoa D. Vu¹*
Anh H. Nguyen¹
Chi D. Nguyen²
Binh, N. Vu²
Anh Q. Luong³
An H. Nguyen³
Lam N. Nguyen³

1. National Drug Information and Adverse Drug Reaction Monitoring Centre, Hanoi University of Pharmacy
2. Department of Analytical Chemistry, Hanoi University of Pharmacy, Hanoi, Vietnam
3. National Institute of Burns, Hanoi, Vietnam

Kuala Lumpur - 2017
Physiopathology of Burns

Fig. 2. Mechanisms underlying augmented renal clearance (ARC) in the critically ill. CO = cardiac output; GFR = glomerular filtration rate; IV = intravenous; RBF = renal blood flow; SIRS = systemic inflammatory response syndrome; ▲ indicates increase.

Udy et. al., Clin. Pharmacokinetics (2010)
Imipenem for infection on burn patients

- Carbapenems was most consumed antibiotics
- Imipenem was first choice among carbapenems for severe infection in burn patients.
- The resistance of hospital infectious pathogens was emerging [2]

1. AHFS Drug information (2011), imipenem-clilastatin
2. Luong QA (2016), Journal of disaster medicine and burns injuries [Vietnamese]
Pharmacokinetic variabilities on burned patients

Inter Individual variation (IIV)

Occasion 1

Baseline

Patient 1

Patient 2

Renal failure

Patient n

Occasion 2

ARC

AKI

Inter occasion variation (IOV)

Should empirical dose fit all?
Pharmacokinetic of imipenem on burned patients

The study aimed:

- To estimate population PK parameters (including IIV and IOV)

- To explore potential covariates influencing PK properties of imipenem on burn patients.
Methods – Patients and data collection

Burned patients in Intensive Care Unit, National Institute of Burns of Vietnam;

Inclusion
- Age ≥ 18
- Hospitalized within 72 hours after injury
- Injury ≥ 20% body surface area
- Imipenem indication

Exclusion
- Renal failure or other serious conditions before injury.
- Refuse to participate into the study

Day 1
- Collect Baseline information

From day 2
- Inclusion/exclusion criteria
- Imipenem indication; Informed consent obtained
- Hemodialysis, transferred, death,...

Daily data collection:
- Clinical, laboratory test, treatments, renal function, pharmacokinetic sampling.
Methods - Pharmacokinetic sampling

Sampling occasions:
+ At steady state (After 12 h)
+ 5-7 days after hospitalization
+ Optional: AKI (AKIN 2 or higher)

Sample set of one occasion:
+ 2 plasma samples (HPLC analysis)
+ A 8h urine sample
+ A plasma creatinine sample
 \[(ARC: \text{8h-urine Clcr} > 130 \text{ ml/min/1,73m}^2) \]

Data analysis
+ Nonlinear mixed effect model
+ Monolix 2016R1
Results – Baseline and follow up monitoring

<table>
<thead>
<tr>
<th>Parameters</th>
<th>n (%)</th>
<th>Parameters</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (Male)</td>
<td>15 (62.5)</td>
<td>Imipenem dosage (n=47)</td>
<td></td>
</tr>
<tr>
<td>Age (years) (#)</td>
<td>38.9 (17.5)</td>
<td>1g q.i.d.</td>
<td>38 (80.9)</td>
</tr>
<tr>
<td>SOFA score ($)</td>
<td>5 (4 - 6)</td>
<td>1g t.i.d.</td>
<td>7 (14.9)</td>
</tr>
<tr>
<td>APACHE II score ($)</td>
<td>14 (11 – 18)</td>
<td>0,5g q.i.d.</td>
<td>1 (2.1)</td>
</tr>
<tr>
<td>eGFR (ml/min/1,73m²)</td>
<td>85.9 (29.4)</td>
<td>0,5g t.i.d.</td>
<td>1 (2.1)</td>
</tr>
<tr>
<td>Burned surface (m²) (#)</td>
<td>50.8 (17.3)</td>
<td>Imipenem courses (days) (#)</td>
<td>7.5 (6 – 10)</td>
</tr>
<tr>
<td>To hospitalization (hrs) ($)</td>
<td>4.5 (3 - 9.5)</td>
<td>Patients with ARC (N=24)</td>
<td>13 (54.2)</td>
</tr>
<tr>
<td>To imipenem use (days)($)</td>
<td>5 (3-7)</td>
<td>Occations with ARC (N = 47)</td>
<td>18 (38.3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Occation(s) per patient</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

($)$ mean (interquartile range);
(#) mean (standard deviation)
Results – Basic pharmacokinetic model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimation (95% CI)</th>
<th>IIV (CV%)</th>
<th>IOV (CV%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pop. Vd (L)</td>
<td>33.5 (28.2-38.8)</td>
<td>18.2</td>
<td>15.6</td>
</tr>
<tr>
<td>IIV (CV%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IOV (CV%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual (CV%)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

From Pop PK modelling: one compartment with proportional error showed best fit.
Results – Covariate model

<table>
<thead>
<tr>
<th></th>
<th>Estimation (95% CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vd (L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-ARC</td>
<td>32.6 (26.7-38.5)</td>
<td>0.83</td>
</tr>
<tr>
<td>ARC</td>
<td>33.6 (26.5-40.7)</td>
<td></td>
</tr>
<tr>
<td>Age (10 years) (*)</td>
<td>0.874 (0.802-0.952)</td>
<td>0.002</td>
</tr>
<tr>
<td>Cl (L/h)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-ARC</td>
<td>16.4 (14.24-18.56)</td>
<td></td>
</tr>
<tr>
<td>ARC</td>
<td>24.9 (20.6-29.2)</td>
<td><0.001</td>
</tr>
<tr>
<td>Age (10 years) (*)</td>
<td>0.872 (0.816-0.932)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

- 10 years older, ↓ 13% Vd
- 10 years older, ↓ 13% Cl

Age was centralized by mean value of 38.9; (): present relative reduction of parameters;*

Elimination rate may be unchanged. Dose adjustment is not necessary.
Inter-occasions variability, The risk?

Simulated imipenem concentration in a burn patient (one compt.)

Fixed: Dose **1000mg** IV infusion for **2 h**; dose interval **6h**; Vd **33 L**

Cl: 15 (L/h)
Cl: 25 (L/h)
Cl: 7.5 (L/h)

Target fT>MIC NOT achieved?
Toxicity?
MIC = 4mg/L
Conclusions

• Imipenem PK parameters (Cl, Vd) substantial varied between burned patients and between occasions.

• Age was significant covariate predicting Cl and Vd, ARC showed no effect on Vd but it did predict Cl.

• Target PK/PD may not be attained in ARC patients. Monitoring urine Clcr may be the solution for detecting ARC and then adjusting imipenem’s dose to ensure the efficacy.